
Wireless Motor Driver Shield Hookup Guide




Introduction
The Wireless Motor Driver Shield is an Arduino shield designed to make it
easier and faster to connect motors and sensors to your Arduino
compatible development board. It’s really handy for throwing together
remote control rovers and small autonomous robots. This guide will get you
up and running with your very own Wireless Motor Driver Shield!

Required Materials

Aside from the Wireless Motor Driver Shield, you will also need to stack the
shield to a microcontroller. We recommend the SparkFun RedBoard or any
other Arduino form factor boards such as the Arduino Uno or the Arduino
Leonardo.

One of the main features of the Driver Shield is to make working with
motors easier for those just learning. In order to fully utilize this shield, you’ll
also need some motors to drive. Check out our Motors Category for some
ideas.

Suggested Reading

You may find some of the following concepts useful before using your
Driver Shield.

SparkFun Wireless Motor Driver Shield
 DEV-14285

Page 1 of 18

Hardware Overview
The Wireless Motor Driver Shield has a number of connectors, switches,
and ports for you to use. Let’s take a look at each one.

XBee Port

At the top of the board, you will find two rows of headers meant to accept
an XBee module. The XBee UART is connected to digital pins 0 and 1 or
analog pins A0 and A1, depending on the position of the XBee selector
switch.

Serial Communication
Asynchronous serial communication
concepts: packets, signal levels,
baud rates, UARTs and more!

Arduino Shields
All things Arduino Shields. What
they are and how to assemble them.

What is an Arduino?
What is this 'Arduino' thing anyway?

Installing Arduino IDE
A step-by-step guide to installing
and testing the Arduino software on
Windows, Mac, and Linux.

Serial Terminal Basics
This tutorial will show you how to
communicate with your serial
devices using a variety of terminal
emulator applications.

Motors and Selecting the
Right One
Learn all about different kinds of
motors and how they operate.

Page 2 of 18

XBee Pins Select Switch

The selector switch underneath the XBee port allows you to choose which
pins to use to communicate to the XBee module. The table below shows
which pins on the Arduino the XBee RXI and TXO pins are connected to,
depending on the switch’s position. If you use SW_SER (pins A0 and A1),
you’ll need to use the Software Serial library.

Note: For the Arduino UNO and similar derivative boards, pins 0 and 1
are used to upload programs to the Arduino. So, if you plan to use
HW_SER to communicate to the XBee, you'll need to switch it back to
SW_SER or remove the XBee module when you upload new code.
There is a possibility of bricking the XBee or issues uploading code to
your Arduino.

Position XBee RXI XBee TXO

HW_SER 0 1

SW_SER A0 A1

I C Port

Under the XBee footprint, you’ll also find a 4-pin female header that breaks
out the Arduino’s I C lines. You can use this to attach various sensors to
your project.

2

2

Page 3 of 18

Analog Input Pins

On the left side of the shield, you’ll find pins A0 through A5 broken out to
headers with power and ground pins for each analog pin. Be aware that if
you select SW_SER on the XBee switch, pins A0 and A1 will be used to
connect to the XBee’s RXI and TXO, respectively.

Note: The pins labeled "PWR" in this analog section are connected to
the Arduino's IOREF pin, so if your Arduino uses 5V logic, these pins
will be 5V. Similarly, if your Arduino runs on 3.3V logic, they will be
3.3V.

Digital Pins

On the right side, you’ll see digital pins 0 through 13 broken out to headers
with a power and ground pin for each pin. These are configured this way to
allow you to easily connect servos. Note that the power pins can be
connected to IOREF, VIN, or the Shield’s power jack, depending on the
position of the 2 power switches.

Page 4 of 18

Motor Driver and Output

At the bottom of the Shield, you’ll find a TB6612FNG motor driver and a
4-pin header for connecting any number of DC motors. The unpopulated
holes are spaced 0.100 inch apart and available for soldering wires from
your motor(s).

Watch out! Although the TB6612FNG is rated for 1.2A per channel,
we found through testing that the practical limit is about 0.8A on
both channels before the driver goes into thermal shutdown. You
may be able to remedy this with heatsinks and/or active cooling, but
we recommend a continued load below 0.8A for most users.

Power Jack

Often, driving motors from the Arduino’s power supply (even VIN) will cause
the voltage to dip and possibly reset your Arduino. To help with this issue,
the power jack on the top-right of the Shield will accept a 5.5 x 2.1mm
power plug from a variety of wall adapters and battery packs.

Note that you will need to set the Motor Power switch to VS to power the
motors from the power jack. If you also set the Power Rail switch to
VMOTOR, then the power jack will be connected to the PWR rail on the
digital pins (e.g. to power servos).

Additionally, this power jack will not power the Arduino. It is intended to
provide a power supply to your motors separate from your Arduino.

Page 5 of 18

Caution! Power supplies attached to the power jack can be up to 15V.
Note that the voltage supplied will be used to directly power motors
and servos, so make sure you don't damage your motors with this raw
voltage! Additionally, the circuitry can only support up to 3.0A of
current (total) delivered to the motors and digital power rail.

Power Switches

In the middle of the board are 2 switches that can be used to set how power
is distributed to the digital PWR rail and motor driver. The Motor Power
switch allows you to select between VS (power jack) and VIN (from
Arduino) to supply power to the motors (labeled VMOTOR). The Power Rail
switch allows you to select between IOREF (from Arduino) and VMOTOR
(output of the Motor Power switch) to power the PWR pins on the digital
headers.

Motor Power
Switch
Position

Power Rail
Switch
Position

Motor Driver is
connected to...

Digital PWR pins
are connected
to...

VS (power
jack)

VMOTOR VS (power jack) VS (power jack)

VS (power
jack)

IOREF VS (power jack) IOREF

VIN VMOTOR VIN VIN

VIN IOREF VIN IOREF

Page 6 of 18

Simple Motor Control
In this section, we’ll review how to connect a pair of motors to the Wireless
Motor Driver Shield and get them spinning. Before we do that, however,
let’s talk a little bit about how we talk to the H-Bridge Driver. If we look at
the datasheet for the TB6612FNG we find a table like this:

This table shows the relationship between the input and output pins on the
H-Bridge. Each of the two channels requires 3 pins to operate: IN1, IN2 and
PWM. By driving the IN pins high or low, you can control the direction of
the motor on that channel as well as disengage it completely or even short
it end-to-end (like pressing the brakes). The signal that you feed to the
PWM pin determines the speed of the motor on that channel. By
referencing the table above, we discover that in order to make the motor
turn clockwise at 50% speed, we’ll need set IN1 to High, IN2 to LOW and
send a 50% PWM signal (that’s analogWrite(pin, 128) in Arduino)

We can look at the silkscreen on the shield itself to find out which Arduino
pins are connected to which inputs on the H-Bridge. Once we know that, we
can start to write some basic example code to control the driver.

Before anything is going to move, we’ll need to connect a pair of motors. If
you’re just starting out with robotics, we suggest the DAGU Hobby
Gearmotors. These motors are the same ones that come with our
Ardumoto Shield Kit. Since they have wires attached to the motors, plug
them into the A+, A-, B+, and B- headers. The example code also allows
you to control a servo, so if you’d like to add a servo, plug it into pin 11.

Now, attach the shield to a the SparkFun RedBoard (or any Arduino with
the Arduino Uno footprint). Connect a power supply like a 9V battery holder
and 9V battery. Once that’s done, we can get the example code loaded
onto the Arduino.

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE.

Page 7 of 18

Copy the example code below, and paste it in the Arduino IDE. (As an
alternative, you can also download the example code from the GitHub
Repository). Connect your RedBoard or Arduino over USB, and make sure
you have the correct board type and COM port selected. Now press
“upload” to send the example code to the board!

Page 8 of 18

/*
 * SparkFun Ludus ProtoShield Example Code
 * SparkFun Electronics
 * Nick Poole 2015
 *
 * This is an Arduino shield that integrates an H­Bridge Drive
r and
 * breaks out all I/O ports to three­pin headers on a GND/PWR/
SIG
 * standard. This enables quick prototyping and integration o
f
 * Arduino projects w/o the need of a breadboard.
 *
 * Ludus is the mascot of the SparkFun Education team.
 * It is a highly intelligent octopus.
 *
 * Please see the License.md file for license information.
*/

#include <Servo.h>

Servo swivel;

int pwm_a = 3; // Channel A speed
int pwm_b = 6; // Channel B speed
int dir_a0 = 4; // Channel A direction 0
int dir_a1 = 5; // Channel A direction 1
int dir_b0 = 7; // Channel B direction 0
int dir_b1 = 8; // Channel B direction 1

char inbit; // A place to store serial input

int swivelpos = 90; // Servo position

void setup()
{

 Serial.begin(9600); // Pour a bowl of serial

 swivel.attach(11); // Attach servo to pin 11
 swivel.write(swivelpos);

pinMode(pwm_a, OUTPUT); // Set control pins to be outputs
pinMode(pwm_b, OUTPUT);
pinMode(dir_a0, OUTPUT);
pinMode(dir_a1, OUTPUT);
pinMode(dir_b0, OUTPUT);
pinMode(dir_b1, OUTPUT);

draw(); // Draw the driving instructions to the serial termi
nal

}

void loop()
{

if(Serial.available()){ // Wait for serial input

 inbit = Serial.read();

switch(inbit){ // Switch based on serial in

case 'w': // Move Forward

Page 9 of 18

forward(200);
delay(30);
shutoff();
break;

case 's': // Move Backward

reverse(200);
delay(30);
shutoff();
break;

case 'q': // Turn Left while moving forward

turnL(200);
delay(30);
shutoff();
break;

case 'e': // Turn Right while moving forward

turnR(200);
delay(30);
shutoff();
break;

case 'a': // Spin Left in place

spinL(200);
delay(30);
shutoff();
break;

case 'd': // Spin Right in place

spinR(200);
delay(30);
shutoff();
break;

case 'x': // Short brake

brake();
break;

case 'z': // Spin servo (on pin 11) left

servoL();
break;

case 'c': // Spin servo (on pin 11) right

servoR();
break;

 }
 }
}

void forward(int speed) // Move Forward
{

digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 1);

Page 10 of 18

digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, speed);
analogWrite(pwm_b, speed);

}

void reverse(int speed) // Move Backward
{

digitalWrite(dir_a0, 1);
digitalWrite(dir_a1, 0);
digitalWrite(dir_b0, 1);
digitalWrite(dir_b1, 0);

analogWrite(pwm_a, speed);
analogWrite(pwm_b, speed);

}

void turnL(int speed) // Turn Left while moving forward
{

digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 1);
digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, speed);
analogWrite(pwm_b, speed/4);

}

void turnR(int speed) // Turn Right while moving forward
{

digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 1);
digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, speed/4);
analogWrite(pwm_b, speed);

}

void spinL(int speed) // Spin Left in place
{

digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 1);
digitalWrite(dir_b0, 1);
digitalWrite(dir_b1, 0);

analogWrite(pwm_a, speed/2);
analogWrite(pwm_b, speed/2);

}

void spinR(int speed) // Spin Right in place
{

digitalWrite(dir_a0, 1);

Page 11 of 18

digitalWrite(dir_a1, 0);
digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, speed/2);
analogWrite(pwm_b, speed/2);

}

void brake() // Short brake
{

digitalWrite(dir_a0, 1);
digitalWrite(dir_a1, 1);
digitalWrite(dir_b0, 1);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, 0);
analogWrite(pwm_b, 0);

}

void shutoff() // Stop Motors w/o braking
{

digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 0);
digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 0);

analogWrite(pwm_a, 0);
analogWrite(pwm_b, 0);

}

void draw() // Serial Instructions
{
 Serial.println(" DuckBot 2015 ");
 Serial.println(" ");
 Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
 Serial.println(" | | | | ");
 Serial.println(" | Q | W | E | ");
 Serial.println(" | turnL |forward| turnR | ");
 Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
 Serial.println(" | | | | ");
 Serial.println(" | A | S | D | ");
 Serial.println(" | spinL |reverse| spinR | ");
 Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
 Serial.println(" | | | | ");
 Serial.println(" | Z | X | C | ");
 Serial.println(" |servo L| brake |servo R| ");
 Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
 Serial.println(" ");
}

void servoL() // Spin servo (on pin 11) left
{

if(swivelpos>10){
 swivelpos = swivelpos­10;
 swivel.write(swivelpos);
 }

}

Page 12 of 18

void servoR() // Spin servo (on pin 11) right
{

if(swivelpos<170){
 swivelpos = swivelpos+10;
 swivel.write(swivelpos);
 }

}

Make sure the Motor Power and Power Rail switches are set to VIN and
VMOTOR, respectively.

If everything went well, you should now be able to open a serial terminal
(such as the one built into the Arduino IDE), and type a bunch of “w"s to
make the motors turn. This example was really written to be used with
terminal programs, which allow you to type directly to the port without
having to press return. That way, you can drive the robot by holding down
the appropriate keys on your keyboard. My favorite terminal program for
this is RealTerm. You can get RealTerm here.

You can also attach a servo to pin 11 and send the characters ‘z’ and ‘c’
through the Serial terminal to move the servo.

Now that we’ve seen this thing in action, let’s dig through the example
code. Understanding how the example code works is the first step towards
writing your own!

Understanding the Example Code
The example code is designed to let you control the H-Bridge, as well as a
servo attached to pin 11, using serial communication. Let’s walk through a
few excerpts from the code and see if we can understand a little better
what’s making it work. As with most sketches, it starts with some basic
setup:

Page 13 of 18

#include <Servo.h>

Servo swivel;

int pwm_a = 3; // Channel A speed
int pwm_b = 6; // Channel B speed
int dir_a0 = 4; // Channel A direction 0
int dir_a1 = 5; // Channel A direction 1
int dir_b0 = 7; // Channel B direction 0
int dir_b1 = 8; // Channel B direction 1

char inbit; // A place to store serial input
int swivelpos = 90; // Servo position

void setup()
{
Serial.begin(9600); // Pour a bowl of serial

swivel.attach(11); // Attach servo to pin 11
swivel.write(swivelpos);

pinMode(pwm_a, OUTPUT); // Set control pins to be outputs
pinMode(pwm_b, OUTPUT);
pinMode(dir_a0, OUTPUT);
pinMode(dir_a1, OUTPUT);
pinMode(dir_b0, OUTPUT);
pinMode(dir_b1, OUTPUT);

draw(); // Draw the driving instructions to the serial termina
l

}

As you can see, we started out by including the servo library and creating a
servo object called “swivel”. Next, we declare a handful of variables to keep
track of which pins are responsible for which functions, and also variables
for the servo position and incoming serial characters. The setup() function
is where serial communication is initialized, the servo object is attached and
the control pins are all set as output devices. Finally, we call the function
draw() , which we’ll look at in a minute.

Page 14 of 18

void loop()
{
if(Serial.available()){ // Wait for serial input
 inbit = Serial.read();

switch(inbit){ // Switch based on serial in
case 'w': // Move Forward

forward(200);
delay(30);
shutoff();
break;

case 's': // Move Backward
reverse(200);
delay(30);
shutoff();
break;

case 'q': // Turn Left while moving forward
turnL(200);
delay(30);
shutoff();
break;

case 'e': // Turn Right while moving forward
turnR(200);
delay(30);
shutoff();
break;

case 'a': // Spin Left in place
spinL(200);
delay(30);
shutoff();
break;

case 'd': // Spin Right in place
spinR(200);
delay(30);
shutoff();
break;

case 'x': // Short brake
brake();
break;

case 'z': // Spin servo (on pin 11) left
servoL();
break;

case 'c': // Spin servo (on pin 11) right
servoR();
break;

 }
}
}

The main loop of the example code just waits to see input on the serial line
and then stores the incoming value and compares it against a list of cases.
By scrolling through the switch/case statements, you can see the behavior
associated with each serial character. The rest of the code is composed of
the various procedures that are called in the main loop. Let’s look at a few
of these:

Page 15 of 18

void draw() // Serial Instructions
{
Serial.println(" ");
Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
Serial.println(" | | | | ");
Serial.println(" | Q | W | E | ");
Serial.println(" | turnL |forward| turnR | ");
Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
Serial.println(" | | | | ");
Serial.println(" | A | S | D | ");
Serial.println(" | spinL |reverse| spinR | ");
Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
Serial.println(" | | | | ");
Serial.println(" | Z | X | C | ");
Serial.println(" |servo L| brake |servo R| ");
Serial.println(" ­­­­­­­­­­­­­­­­­­­­­­­­­ ");
Serial.println(" ");
}

This one is pretty straightforward! The draw() procedure is just a bunch of
print statements that tell you which keys are attached to which functions.

Finally, there are a bunch of procedures that actually set the speed and
direction of the motors. These are the functions that you’ll want to borrow
for your own code because they wrap up all of the control pin stuff we
talked about in the last section into intuitive commands like “forward,” “turn,”
and “brake.” All of the motion commands are basically structured the same.
For example:

void forward(int speed) // Move Forward
{
digitalWrite(dir_a0, 0);
digitalWrite(dir_a1, 1);
digitalWrite(dir_b0, 0);
digitalWrite(dir_b1, 1);

analogWrite(pwm_a, speed);
analogWrite(pwm_b, speed);
}

The brake() and shutoff() functions are structured the same as the
motion procedures except that in the case of brake() , all of the pins are
written high, and in the case of shutoff() , all of the pins are written low.
The brake() procedure actually shorts the motor so that it resists turning.
The shutoff() function simply shuts off power to the motors so that they
come to a rolling stop. Try referring to the example code that was copied
from Simple Motor Control for more details on how these functions were
defined.

Finally, there are the servo control functions, which increment or decrement
the servo position variable before writing it to the servo:

void servoL() // Spin servo (on pin 11) left
{
if(swivelpos>10){
swivelpos = swivelpos­10;
swivel.write(swivelpos);
}
}

The only kind of clever thing going on here is that we check ahead of time
whether we’ve reached the limits of the servo so we can’t increment beyond
its range of motion.

Page 16 of 18

Going Wireless
By using the power of ZigBee, you can free your project from its USB
tether! Do do this, you’ll need a pair of XBee radio modules and an XBee
Explorer USB. Even if you’re not familiar with XBee, you should be able to
run the example code wirelessly as the radio modules should be configured
properly by default. For an introduction to XBee, check out this SparkFun
tutorial for getting started with XBees. There’s a lot more you can do with
XBee than what we’ll cover here.

The first step is to plug an XBee radio into the Wireless Motor Driver Shield.
The silkscreen on the board shows which orientation it should go. Make
sure that the slide switch marked XBee Serial Select is set to HW_SER.

This will connect the XBee radio to the hardware serial lines of the Arduino.
Next, plug your XBee Explorer into the USB port on your computer and
open the serial terminal program that you were using in the Simple Motor
Control section.

Open the COM port for the XBee Explorer, and switch the Arduino on.

The example code should now work exactly as it did before, only this time,
your serial commands are being sent over the air! What’s happening is that
the XBee radio is acting like a wireless serial tunnel. As far as the Arduino
knows, there’s a USB cable hooked up to the serial line.

Resources and Going Further
Hopefully by now, you’ve built yourself a robot to play with! Getting moving
is just the start, though. For more information, check out the resources
below:

• TB6612FNG Motor Driver Datasheet
• Wireless Motor Driver Shield GitHub Repository
• Example code
• Arduino Software Serial Library

Check out some of our other robotics tutorials to take your Wireless Motor
Driver Shield to the next level.

Page 17 of 18

Serial Communication
Asynchronous serial communication
concepts: packets, signal levels,
baud rates, UARTs and more!

Actobotics Basic Differential
Platform
Get started with Actobotics with this
simple vehicle. Then expand and
customize it for your own evil robot
empire.

HMC6343 3-axis Compass
Hookup Guide
How to hook the HMC6343 -- a
high-end, tilt-compensated compass
module -- up to an Arduino. Never
get lost again!

Exploring XBees and XCTU
How to set up an XBee using your
computer, the X-CTU software, and
an XBee Explorer interface board.

Page 18 of 18

10/23/2017https://learn.sparkfun.com/tutorials/wireless-motor-driver-shield-hookup-guide?_ga=2.24...

